212

Chapter 4 Arithmetic for Computers

The long formula in parentheses to the right of the first multiply operation is
simply the two’s complement representation of a (see page 170.) Thus the
sum is further simplified to

bxa

Hence Booth’s algorithm does in fact perform two’s complement multiplica-
tion of 2 and b.

Summary

Multiplication is accomplished by a simple shift and add hardware, derived
from the paper-and-pencil method learned in grammar school. Compilers
even replace multiplications by powers of 2 with shift instructions. Signed
multiplication is more challenging, with Booth’s algorithm rising to the chal-
lenge with essentially a clever factorization of the two’s complement number
representation of the multiplier.

Elaboration: The original reason for Booth's algorithm was speed, because early
machines could shift faster than they could add. The hope was that this encoding
scheme would increase the number of shifts. This algorithm is sensitive to particular
bit patterns, however, and may actually increase the number of adds or subtracts. For
example, bit patterns that aiternate O and 1, cailed isolated 1s, will cause the hard-
ware to add or subtract at each step. If ail combinations occur with uniform distribu-
tion, then on average there is no savings. Greater advantage comes from performing
multiple bits per step, which we explore in Exercise 4.39.

Division

Divide et impera.

Latin for “Divide and rule,” Ancient political maxim cited by Machiavelli, 1532

The reciprocal operation of multiply is divide, an operation that is even less
frequent and even more quirky. It even offers the opportunity to perform a
mathematically invalid operation: dividing by 0.

Let’s start with an example of long division using decimal numbers to recall
the names of the operands and the grammar school division algorithm. For

4.7 Division 213

reasons similar to those in the previous section, we limit the decimal digits to
just 0 or 1. The example is dividing 1,001,010, by 1000teq:

-~

10014en Quotient
Divisor 1000en '10010104, Dividend
=1000
10
101
1010
-1000
10ten Remainder

The two operands (dividend and divisor) and the result (quotient) of divide
are accompanied by a second result called the remainder. Here is another way
to express the relationship between the components:

Dividend = Quotient x Divisor + Remainder

where the Remainder is smaller than the Divisor. Infrequently, programs use
the divide instruction just to get the remainder, ignoring the quotient. Note
that the size of the dividend is limited by the sum of the sizes of the divisor
and quotient.

The basic grammar school division algorithm tries to see how big a number
can be subtracted, creating a digit of the quotient on each attempt. Our care-
fully selected decimal example uses only the numbers 0 and 1, so it’s easy to
figure out how many times the divisor goes into the portion of the
dividend: it’s either O times or 1 time. Binary numbers contain only 0 or 1, so
binary division is restricted to these two choices, thereby simplifying binary
division.

Once again textbooks traditionally jump to the refined division hardware,
and once again we abandon tradition to offer insight into how that hardware
evolved. The next three subsections examine three versions of the divide algo-
rithm, refining the hardware requirements as we go. Let’s assume that both
the dividend and divisor are positive and hence the quotient and the remain-
der are nonnegative.

First Iteration of the Division Algorithm and Hardware

Figure 4.31 shows hardware to mimic our grammar school algorithm. We
start with the 32-bit Quotient register set to 0. Each step of the algorithm
needs to move the divisor to the right one digit, so we start with the divisor
placed in the left half of the 64-bit Divisor register and shift it right one bit
each step to align it with the dividend.

Chapter 4 Arithmetic for Computers

—

Divisor
Shift right
64 bits
L —
\/ Quotient
64-bit ALU Shift left
32 bits
y

Remainder Control

Write
64 bits 4

FIGURE 4.31 First version of the division hardware. The Divisor register, ALU, and Remain-
der register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor
starts in the left half of the Divisor register and is shifted right 1 bit on each step. The remainder is
initialized with the dividend. Control decides when to shift the Divisor and Quotient registers
and when to write the new value into the Remainder register.

Figure 4.32 shows three steps of the first division algorithm. Unlike a hu-
man, the computer isn't smart enough to know in advance whether the divisor
is smaller than the dividend. It must first subtract the divisor in step 1; remem-
ber that this is how we performed the comparison in the set-on-less-than in-
struction. If the result is negative, the next step is to restore the original value
by adding the divisor back to the remainder (step 2b). The remainder and quo-
tient will be found in their namesake registers after the iterations are complete.

4.7 Division

215

< Start ’

y

1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register

Remainder 2 Q

4

Test Remainder

Remainder < 0

4

2a. Shift the Quatient register to the left
setting the new rightmost bit to 1

2b. Restore the original value by adding
the Divisor register to the Remainder
register and place the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to O

r

y

3. Shift the Divisor register right 1 bit

33rd repetition?

No: < 33 repetitions

Yes: 33 repetitions

FIGURE 4.32 The first division algorithm, using the hardware in Figure 4.31. If the Remain-
der is positive, the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A neg-
ative Remainder after this step means that the divisor did not go into the dividend, so step 2b
generates a 0 in the quotient and adds the divisor to the remainder, thereby reversing the subtrac-
tion of step 1. The final shift, in step 3, aligns the divisor properly, relative to the dividend for the
next iteration. These steps are repeated 33 times; the reason for the apparent extra step will
become clear in the next version of the algorithm.

216

Chapter 4 Arithmetic for Computers

Example

Answer

Using a 4-bit version of the algorithm to save pages, let’s try dividing 7,e,
by 2;en or 0000 0111, by 00104,

Figure 4.33 shows the value of each register for each of the steps, with the
quotient being 3, and the remainder 1,,,. Notice that the test in step 2 of
whether the remainder is positive or negative simply tests whether the sign
bit of the Remainder register is a 0 or 1. The surprising requirement of this
algorithm is that it takes n + 1 steps to get the proper quotient and

remainder.
" Iteration Step Quotient Divisar Remainder
0 Initial Values 0000 0010 0000 | 0000 OLI1
1: Rem = Rem - Div 0000 | 0010 0000 | @Lin 0li:
1 2b: Rem<0Q => +Div, s1Q, Q0 =0 00ttt 0010 0000 | qoun oLl
3: shift Div right 0000 nont onen| 0000 OL1L
1: Rem = Rem - Div 0000 | 0001 0000 | (.. 0.t
2 2b: Rem < 0 => +Div, sllQ, Q0 =0 0004 0001 0000 | auong 0ot
3:_shift Div right 0000 | 0000 100014 0000 Ol1l
1: Rem = Rem - Div 0000 | 0000 1000] Gri: Litt
3 2b: Rem <0 => +Div, s Q, Q0 =0 0000 | 0000 1000} ngun 011!
3: shift Div right 0000 5060 010 0000 0111
1: Rem = Rem - Div 0000 | 0000 0100 | ©cud Onit
4 2a: Rem 0=>sl1Q,Q0=1 0001 0000 0100 | 0000 0011
3: shift Div right 0001 anon neio | 0000 0011
1: Rem = Rem - Div 0001 0000 0010 [€xen ooyt
5 2a: Rem 0=>sl1Q,Q0=1 0011 | 0000 0010 | 0000 0001
3: shift Div right 0011 annc So9t | 0000 0001

FIGURE 4.33 Division example using first algorithm in Figure 4.32.

Second Version of the Division Algorithm and Hardware

Once again the frugal computer pioneers recognized that, at most, half the
divisor has useful information, and so both the divisor and ALU could poten-
tially be cut in half. Shifting the remainder to the left instead of shifting the
divisor to the right produces the same alignment and accomplishes the goal
of simplifying the hardware necessary for the ALU and the divisor.
Figure 4.34 shows the simplified hardware for the second version of the algo-

rithm.

4.7 Division 217

Divisor
32 bits
p—
N o /) Quotient
32-bit ALU Shift left
32 bits
Af—
X Shift left
Rem{mder Write
64 bits

FIGURE 4.34 Second version of the division hardware. The Divisor register, ALU, and Quo-
tient register are all 32 bits wide, with only the Remainder register left at 64 bits. Compared to
Figure 4.31, the ALU and Divisor registers are halved and the remainder is shifted left. These
changes are highlighted.

The second improvement comes from noticing that the first step of the cur-
rent algorithm cannot produce a 1 in the quotient bit; if it did, then the quotient
would be too large for the register. By switching the order of the operations to
shift and then subtract, one iteration of the algorithm can be removed.
Figure 4.35 shows the changes in this refined division algorithm. The remain-
der is now found in the left half of the Remainder register.

218

Chapter 4 Arithmetic for Computers

‘ Start ’

4

1. Shift the Remainder register left 1 bit

<
~

y

2. Subtract the Divisor register from the
left haif of the Remainder register, and
place the result in the left half of the
Remainder register

Remainder 2 0

\d

Test Remainder

Remainder < 0

y

3a. Shift the Quotient register to the left,
setting the new rightmost bit to 1

3b. Restore the original value by adding
- the Divisor register to the !eft haif of the

- Remainder register and place the sum
in the left half of the Remainder register.
Also, shift the Quotient register to the left,

setting the new least significant bitto O

32nd repetition?

No: < 32 repetitions

Yes: 32 repetitions

FIGURE 4.35 The second division algorithm, using the hardware in Figure 4.34. Unlike the
first algorithm in Figure 4.32, only the left half of the remainder is changed, and the remainder is
shifted left instead of the divisor being shifted right. Color type shows the changes from

Figure +.32.

4.7 Division 219

Example

Answer

Divide 0000 0111,,, by 0010,,, using the algorithm in Figure 4.35.
The answer is summarized in Figure 4.36.
Iteration Quatient Divisor Remainder
0 Initial Values 0000 0010 0000 0111
1. shift Rem left 0000 0010 2000 11D
3b: Rem <0 =>+Div,s11Q, Q0 =0 0000 0010 06N9 1110
1: shift Rem left 0000 0010 | 0001 1100
2 2: Rem = Rem - Div 0000 0010 O‘-ii 1100
3b: Rem <0 => +Div, sl1Q, Q0 =0 0000 0010 Qooi 1100
1: shift Rem left 0000 0010 noLl 1aen
3 2: Rem = Rem - Div 0000 00l0 @()G‘. 1000
3a: Rem 0=>sl1Q,Q0=1 0001 0010 0001 1000
1. shift Rem left 0001 golo el anY
4 2: Rem = Rem - Div 0001 0010 ®()U1 0000
3a: Rem 0=>sl1Q,Q0=1 0011 0010 0001 0000

FIGURE 4.38 Division example using second aigorithm in Figure 4.35.

Final Version of the Division Algorithm and Hardware

With the same insight and motivation as in the third version of the multiplica-
tion algorithm, computer pioneers saw that the Quotient register could be
eliminated by shifting the bits of the quotient into the Remainder instead of
shifting in Os as in the preceding algorithm. Figure 4.37 shows the third ver-
sion of the algorithm. We start the algorithm by shifting the Remainder left as
before. Thereafter, the loop contains only two steps because the shifting of the
Remainder register shifts both the remainder in the left half and the quotient
in the right half (see Figure 4.38). The consequence of combining the two reg-
isters and the new order of the operations in the loop is that the remainder
will be shifted left one time too many. Thus the final correction step must shift
back only the remainder in the left half of the register.

220 Chapter 4 Arithmetic for Computers

1. Shift the Remainder register left 1 bit

> . P ————————————————t
B
y

2. Subtract the Divisor register from the
left half of the Remainder register and
piace the result in the ieft half of the
Remainder register

Remainder 2 0 Remainder < 0

Test Remainder

y

y

3a. Shift the Remainder register to the 3b. Restore the original value by adding
left, setting the new rightmost bitto 1 the Divisor register to the left half of the
Remainder éeglster and piace the sum
in the teft half of the Remainder register.
Also shift the Remainder register to the
left, setting the new rightmost bit to O

|

No: < 32 repetitions

Yes: 32 repetitions

- Gone. Shift left half of Remainder right 1 bit)

FIGURE 4.37 The third division algorithm has Just two steps. The Remainder register shifts
left, combining steps 1 and 3 in Figure 4.35 on page 218.

4.7 Division 221

Divisor

N
32-bit ALU
p—
. Shift left
Rem+nder Write @

64 bits

32 bits

FIGURE 4.38 Third version of the division hardware. This version combines the Quotient reg-
ister with the right half of the Remainder register.

Example Use the third version of the algorithm to divide 0000 01114, by 00104,

Answer Figure 4.39 shows how the quotient is created in the bottom of the Remain-
der register and how both are shifted left in a single operation.

Iteration Step Divisor Remainder
0 Initial Values 0010 0000 0111
Shift Rem left 1 0010 000G LLLQ

) 1: Rem = Rem - Div 0010 ool 1110

2b: Rem < 0 => +Div, sIR, RO =0 0010 0NcL 1199

2 1: Rem = Rem - Div 0010 (Dill 1100

2b: Rem < O => +Div, sSHR, RO =0 0010 0011 1000

3 1: Rem = Rem - Div 0010 ©oc1 1000

- 2a: Rem 0=>sllR,RO=1 0010 notl 500!t
4 1: Rem = Rem - Div 0010 oot 000!

2a: Rem O0=>sllR,RO=1 0010 D012 D01

Shift left half of Rem right 1 0010 0001 0011

FIGURE 4.39 Division example using third algorithm in Figure 4.32.

